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Abstract
The model periodic Coulomb interaction (Williamson et al 1997 Phys. Rev. B
55 R4851) is a replacement for the Ewald sum, developed to reduce finite-
size errors in the simulation of extended 3D systems. We investigate the
generalization of this technique to quasi-2D systems; we show through testing
in quantum Monte Carlo simulations that while the new interaction reduces the
calculation time dramatically it does not reduce finite-size errors. We explain
this by analysing the finite-size errors generated when using the Ewald sum.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The current practical limit on the number of electrons in a quantum Monte Carlo (QMC)
simulation is of the order of thousands. In order to simulate extended systems, it is therefore
necessary to use a supercell with periodic boundary conditions. This device introduces finite-
size errors. One source of these errors is the way in which the Coulomb energy is calculated.
Traditionally, the Coulomb potential due to one electron (and the corresponding lattice of
periodically repeated images) was evaluated using the Ewald sum [2], which gives the periodic
solution to Poisson’s equation. However, it has been shown (in the case of 3D periodicity)
that using the Ewald sum leads to an error in the energy per electron of order 1/N , where N
is the number of electrons [3]. The modified periodic Coulomb interaction [1] was introduced
to avoid this. In addition to reducing the finite-size error, it also brings a considerable speed
improvement.

In terms of calculating the Coulomb energy, quasi-2D systems provide a greater challenge
than those with full 3D periodicity. Although the generalization of the Ewald potential to
quasi-2D systems is known [4, 5] (a more convincing derivation of this than the authors were
able to find in the literature is given in appendix A), it is awkward and slow to evaluate. As in

0953-8984/04/060891+12$30.00 © 2004 IOP Publishing Ltd Printed in the UK 891

http://stacks.iop.org/JPhysCM/16/891


892 B Wood et al

Figure 1. (a) A slab system with one electron far outside the slab, showing the associated exchange–
correlation hole; (b) the result of using the Ewald interaction in this case. The shading represents
the electron density.

3D, the quasi-2D Ewald sum gives the potential due to a lattice of charges, and as in 3D this
produces finite-size effects.

To visualize a situation in which the quasi-2D Ewald potential is undesirable, consider a
slab system where during the course of a simulation a single electron has moved some distance
outside the slab (figure 1(a)). The exchange–correlation hole associated with this electron
remains largely within the slab, expanding laterally as the electron moves further away. When
the Ewald sum is used for the electron–electron interaction, this configuration of electron and
hole is repeated identically in every cell (figure 1(b)); the result is that the electron interacts
with an unphysical capacitor-like array of charges, and the interaction energy increases linearly
with the distance outside the slab.

Another good reason exists for wanting to improve the accuracy of quasi-2D supercell
simulations. Recent studies [6] (using non-QMC methods) of the simplest of quasi-2D systems,
a slab of electron gas, have given results for the surface energy in disagreement with those
obtained using QMC [7, 8]. It is important to test the possible sources of error in previous QMC
calculations in order to demonstrate the suitability of QMC as a tool for studying surfaces.

In this paper, we implement and test the quasi-2D MPC interaction. We find that although
finite-size errors are not reduced, the time required to evaluate the MPC interaction is around
two orders of magnitude less than that for the Ewald sum.

2. The model interaction

Under the Ewald scheme, the electron–electron part of the Coulomb energy is

EEW
e−e =

〈∑
i> j

vE(ri j)

〉
+ 1

2 Nξ (1)

where N is the number of electrons in the simulation supercell and vE(ri j) is the potential at
ri due to the charge at r j and the corresponding periodically repeated images, evaluated using
the Ewald method. The self-interaction ξ is the energy of interaction between a charge and
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its own images. Expressions for vE and ξ are derived in appendix A. Here and throughout,
Hartree atomic units are used.

The one- and two-particle and exchange–correlation-holedensities are defined in the usual
way:

n(r) =
∫

�

dX |�(X)|2
∑

i

δ(r − ri) (2)

n(r, r′) =
∫

�

dX |�(X)|2
∑
i �= j

δ(r − ri)δ(r
′ − r j) (3)

= n(r)n(r′) + n(r)nXC(r, r′) (4)

where X represents all spatial and spin coordinates (r1σ1 · · · rN σN ) and � is the simulation cell
volume. The simulation cell for a quasi-2D system is subject to periodic boundary conditions
in two dimensions; in the third, it has infinite extent.

Using the fact that∫
�

dr′ nXC(r, r′) = −1, (5)

the definitions above reduce equation (1) to the form

EEW
e−e = 1

2

∫
�

dr

∫
�

dr′ n(r)n(r′)vE(r − r′) + 1
2

∫
�

dr

∫
�

dr′ n(r)nXC(r, r′)[vE(r − r′) − ξ ]

= UHa + U EW
XC . (6)

Equation (6) illustrates the decomposition of the Coulomb energy into Hartree and exchange–
correlation terms. In the MPC [1], this energy is replaced by

EMPC
e−e =

〈∑
i> j

f (ri j )

〉
+

〈∑
i

1
2

∫
�

dr n(r)[vE(r − ri) − f (r − ri )]

〉

= 1
2

∫
�

dr

∫
�

dr′ n(r)n(r′)vE(r − r′) + 1
2

∫
�

dr

∫
�

dr′ n(r)nXC(r, r′) f (r − r′)

= UHa + U MPC
XC . (7)

Here f (r) is the normal 1/r Coulomb interaction, except that the vector r is reduced into
the Wigner–Seitz cell of the simulation cell lattice. This is known as the minimum-image
convention; it ensures that the interaction remains periodic. By comparing equations (6)
and (7), it may be seen that the effect of using the MPC is to replace (vE − ξ) with f in
the exchange–correlation term while leaving the Hartree term unchanged. This is desirable
because the exchange–correlationhole should not be duplicated outside the simulation cell; the
Ewald interaction vE builds in the effects of this duplication, and therefore should not appear
in UXC. This analysis applies equally to quasi-2D or fully 3D systems. Equation (7) gives
the required energy expectation value. To obtain the corresponding term in the Hamiltonian,
consider the expectation value of the total energy obtained using the Ewald interaction:

E[�] = 〈�|Ĥ |�〉 = E0[�] + EEW
e−e[�]. (8)

E0, by definition, contains all terms except the electron–electron interaction. Replacing EEW
e−e

with EMPC
e−e and solving δ(E[�] − λ〈�|�〉) = 0 gives

Ĥ MPC
e−e =

∑
i> j

f (ri j ) +
∑

i

∫
�

dr n(r)[vE(r − ri ) − f (r − ri )]. (9)
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Note that the functional differentiation has removed the factor of 1
2 in the second term. The

relationship between EMPC
e−e and Ĥ MPC

e−e is therefore

EMPC
e−e = 〈Ĥ MPC

e−e 〉 − 1
2

∫
�

dr

∫
�

dr′ n(r)n(r′)[vE(r − r′) − f (r − r′)]. (10)

To evaluate EMPC
e−e or Ĥ MPC

e−e during a simulation requires a knowledge of n(r), the electron
density. In general, this is not known exactly before the simulation. However, a good
approximation may be obtained from an independent-particle calculation; such calculations
are routinely used to generate trial wavefunctions for use in QMC, so an approximate electron
density is available. It may be shown [9] that the energy error in this approximation is O[(�n)2],
where �n is the error in the density.

Equation (9) illustrates the reason for the improvement in speed achieved by the MPC.
Two-body interactions require O[N2] operations, while one-body interactions require only
O[N]; the only two-body interaction in the MPC is f , which is a much simpler function to
evaluate than the costly vE. The remaining term in equation (9) is effectively a one-body
potential. Using the 3D Fourier transforms

nk = 1

�

∫
�

dr n(r)eik·r (11)

gk = 1

�

∫
�

dr [vE(r) − f (r)]eik·r, (12)

this term may be evaluated as

�
∑

i

∑
k

n∗
kgkeik·ri . (13)

Since the transforms can be pre-calculated, the one-body term is also inexpensive. The use of
3D transforms means that the simulation cell may no longer have infinite extent in the non-
periodic direction. To avoid overlapping, the electron density must also be restricted to a range
w, where the size of the simulation cell in this direction is at least 2w. The requirement of
finite extent is not unreasonable for quasi-2D systems, and the electron density usually tends
exponentially to zero beyond a certain point.

3. Results

All the results presented in this section are for a system of electrons moving in the potential
of a positive background charge. This background charge has uniform density inside the slab
and zero outside, thus defining the slab width. The simulation cell was chosen to be of square
cross-section, with the size determined by the number of electrons used. The system is not
spin-polarized.

The chosen slab width was 18.63 au, with background charge density (4/3πr3
s ) where

rs = 2.07 au. This corresponds approximately to the electron density of aluminium.
The QMC simulations were carried out using either variational or fixed-node diffusion

Monte Carlo [10], with trial wavefunctions obtained from density-functional theory
calculations in the local density approximation. These trial wavefunctions were also used
to calculate the exchange energy [11]

EX = −
∑

n

∑
n′

∫
�

dr

∫
�

dr′ [vE(r − r′) − ξ ]φ∗
n(r)φn(r

′)φn′(r)φ∗
n′(r)′. (14)

Here, φn represents the nth single-electron wavefunction. The many-electron trial function
used in the QMC calculations was of the form

�(X) = eJ (X)D↑(r1 · · · rN/2)D↓(rN/2+1 · · · rN ) (15)
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Figure 2. The total VMC energy per electron is plotted as a function of system size, comparing the
Ewald and MPC interactions. The results have been corrected to account for independent-particle
finite-size errors [1]. The exchange energy is also plotted, with a shift in the energy scale. Error
bars are not shown for the exchange energy as the results are fully converged with respect to the
number of k-vectors used to represent the single-electron wavefunction. Any remaining error is a
consequence of the quality of the LDA-DFT wavefunctions (and is therefore difficult to estimate).

where D↑ and D↓ are Slater determinants of the φn . The up- and down-spin determinants are
identical. The Jastrow factor has the following simple form:

J (X) = −
∑
i> j

uσi σ j (ri j) +
∑

i

χ(ri ) (16)

uσi σ j (ri j) = A

ri j
[1 − exp(−ri j/Fσi σ j )] exp(−r2

i j/L2
0) (17)

χ(ri ) =
∑

k

ck sin(kzi). (18)

The variational parameters here are ck and A: F is related to A by the cusp conditions [12, 13];
L0 is chosen to ensure that u decays to zero before ri j reaches the size of the simulation cell.
Note that the centre of the slab corresponds to z = w, where the length of the simulation cell
is 2w; χ in equation (18) is symmetric about the slab centre.

Figures 2 and 3 show the dependence of the total energy per electron on system size for both
the Ewald and MPC interactions. These results have been corrected for independent-particle
finite-size errors [14]. The 3D MPC interaction has been shown to have significantly smaller
finite-size errors than the 3D Ewald [1]. In contrast, figures 2 and 3 illustrate that the Q2D
version does not lead to a similar improvement. In fact, there is good agreement between the
results obtained using the different interactions. The reasons for this are discussed in section 4.
The slow convergence of the QMC results with system size is reflected in the exchange energy,
calculated using equation (14) and also plotted in figure 2.

The MPC does show a significant improvement in calculation time, which is illustrated
in figure 4. The figure clearly shows the O[N2] scaling of the Ewald interaction. The MPC
interaction should also be dominated by the O[N2] term for large system sizes, but the function
being evaluated is much less costly. For the system sizes tested here, the O[N] term also
contributes significantly. The time required for the MPC pre-calculation is not included in the
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Figure 3. The total energy per electron as a function of system size, obtained in fixed-node DMC.
Independent-particle finite-size error corrections have been applied.
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Figure 4. The time taken to calculate the electron–electron interaction during an 8000-move
variational quantum Monte Carlo simulation, comparing the Ewald and MPC interactions.

figure; for any serious simulation, it is negligible in comparison with the time spent calculating
the electron–electron interaction during the simulation. In our DMC simulations, evaluating
the electron–electron interaction with the Ewald method takes up a significant fraction of the
calculation time (often 40–50%). Figure 4 shows that the MPC interaction is nearly two orders
of magnitude faster than the Ewald. This is a much more dramatic improvement than in the
3D case.

4. Conclusions

The results of section 3 demonstrate that although the MPC interaction enjoys the expected
advantage in speed over the Ewald sum, it does not reduce the finite-size errors. In order to



Coulomb finite-size effects in quasi-2D systems 897

understand this, it is instructive to consider the expected size of the finite-size error incurred
by using the Ewald interaction:

EEW
XC − EMPC

XC = 1
2

∫
�

dr

∫
�

dr′ n(r)nXC(r, r′)[vE(r − r′) − ξ − f (r − r′)]. (19)

The exchange–correlation hole described by nXC is generally short ranged. An approximation
to equation (19) may therefore be obtained by using the small-r and large-L expansion

vE(r) − ξ = 1

r
− C

L3

(
z2 − r2

‖
2

)
+ O[r4] + O[e−L2/σ 2

] (20)

which is derived in appendix B. Here L is the simulation cell lattice parameter, C is a constant
and σ is the Ewald convergence parameter described in appendix A.

Combining equations (19) and (20) gives an approximation for the expected error incurred
by using the quasi-2D Ewald sum:

− C

2L3

∫
�

dr

∫
�

dr′ n(r)nXC(r, r′)
[
(z − z ′)2 − 1

2
(r‖ − r′

‖)
2

]
. (21)

Thus, a large cancellation of the error may be anticipated in regions where the parallel and
perpendicular directions are equivalent; this is the case in the bulk of the system, where the
exchange hole is roughly spherical. At the surfaces of the system this is no longer true.
However, it is also likely that the exchange hole expands in these regions, making the small-r
expansion used in equation (21) less appropriate.

In 3D, the small-r expansion of the Ewald interaction is spherically symmetric [3] and
there is no error cancellation.

The slow convergence of the QMC and exchange energies suggests that a successful
supercell calculation of the surface energy would require the use of large systems. This may
be one reason for the current discrepancy between QMC estimates of this quantity and those
obtained by other (non-supercell) methods. However, further investigation is required.

Appendix A. Derivation of the Ewald sum for quasi-2D systems

The generalization of the Ewald summation to a system with periodic repeat in only two
dimensions was first obtained by Parry [4, 5]. However, this original derivation, although it
leads to the correct result, is difficult to follow. An alternative derivation is presented here.

The problem is to find the potential due to a charge of unit magnitude at the origin and all
its images in the plane. The charge distribution is therefore

ρ(r) =
∑
R

δ(r − R) (A.1)

where R is a 2D lattice vector. The Ewald method [2] is to rewrite the charge distribution,
creating a smooth term which may be evaluated in reciprocal space and a rapidly decaying
term which converges quickly in real space. In the quasi-2D system, this is modified slightly,
and the charge distribution is in fact rewritten as

ρ(r) =
(∑

R

[
δ(r − R) − 1

π
√

πσ 3
e−(r−R)2/σ 2

])

+

(∑
R

1

π
√

πσ 3
e−(r−R)2/σ 2 − 1√

πσ A
e−z2/σ 2

)
+

(
1√

πσ A
e−z2/σ 2

)

= ρ1(r) + ρ2(r) + ρ3(r). (A.2)
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Here, A is the area of the 2D cell defined by the primitive lattice vectors and σ is a parameter
which may be adjusted to assure the rapid convergence of real and reciprocal space sums
(without affecting the result). The three terms on the right-hand side of equation (A.2) will be
dealt with separately, starting with ρ1.

The contribution to the potential from each term in the sum decays rapidly with |r − R|;
the potential is therefore evaluated in real space, using the Gauss law. Consider the charge
distribution

ρ(r) = δ(r) − 1

π
√

πσ 3
e−r2/σ 2

. (A.3)

By the Gauss law, the electric field generated by this potential has magnitude

E(r) = 2e−r2/σ 2

√
πσr

+
1

r2
erfc

(
r

σ

)
(A.4)

in atomic units. Insisting that the potential must tend to zero as r → ∞ gives

φ(r) =
∫ ∞

r
dr ′ E(r ′)

= 1

r
erfc

(
r

σ

)
(A.5)

so that the contribution to the potential from the charge distribution ρ1 is

φ1(r) =
∑
R

1

|r − R| erfc

( |r − R|
σ

)
. (A.6)

The second contribution comes from a reciprocal space sum; the charge distribution is
therefore rewritten as

ρ2(r) = e−z2/σ 2
∑

k

ρkeik·r‖ (A.7)

where k is the set of 2D reciprocal lattice vectors and the ρk are Fourier coefficients. The sum
excludes k = 0, since ρk=0 = 0 by design. The other coefficients are given by

ρk = 1

A

∫
cell

dr‖
∑
R

1√
ππσ 3

e−(r‖−R)2/σ 2
e−ik·r‖

= 1

A
√

ππσ 3

∫
space

dr‖ e−r2‖/σ 2−ik·r‖

= 1

A
√

πσ
e−k2σ 2/4. (A.8)

The desired potential is expressed as a similar series:

φ2(r) =
∑

k

φk(z)e
ik·r‖ . (A.9)

These expressions may then be substituted into Poisson’s equation,

∇2φ2(r) = −4πρ2(r), (A.10)

to give an equation for the coefficients φk(z):(
d2

dz2
− k2

)
φk(z) = −4

√
π

σ A
e−(z2+k2/4)/σ 2

. (A.11)

This may be solved with the Green function

Gk(z, z′) = − 1

2k
e−k|z−z′ | (A.12)
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to give

φk(z) = −
∫ ∞

−∞
dz′ 1

2k
e−k|z−z′ |

(
−4

√
π

σ A
e−(z2+k2/4)/σ 2

)
, (A.13)

which, after integration, yields the potential

φ2(r) = π

A

∑
k

1

k

[
e−kz erfc

(
σk

2
− z

σ

)
+ ekz erfc

(
σk

2
+

z

σ

)]
eik·r‖ . (A.14)

Finally, the third charge distribution is

ρ3(r) = 1

A
√

πσ
e−z2/σ 2

. (A.15)

Since this function only depends on z, Poisson’s equation reduces to a one-dimensional
problem; the appropriate Green function is

G(z, z ′) = 1
2 |z − z′|. (A.16)

The potential is therefore given by

φ3(r) = −4π

∫ ∞

−∞
dz′

(
1

2
|z − z′|

)(
1

A
√

πσ
e−z′2/σ 2

)

= −2π

A

[
z erf

(
z

σ

)
+

σ√
π

e−z2/σ 2

]
. (A.17)

Combining the three previous results gives the following expression for the potential due
to a charge at r = 0 and the corresponding images:

vE(r) =
∑
R

1

|r − R| erfc

( |r − R|
σ

)
− 2π

A

[
z erf

(
z

σ

)
+

σ√
π

e−z2/σ 2

]

+
∑

k

π

k A

[
e−kz erfc

(
σk

2
− z

σ

)
+ ekz erfc

(
σk

2
+

z

σ

)]
eik·r‖ . (A.18)

The self-interaction energy is the energy associated with the interaction between this
charge and its images:

ξ = lim
r→0

(
vE(r) − 1

r

)

= lim
r→0

(
1

r
erfc

(
r

σ

)
− 1

r

)
+

∑
R �=0

1

R
erfc

(
R

σ

)
− 2σ

√
π

A
+

∑
k �=0

2π

k A
erfc

(
σk

2

)

= − 2

σ
√

π
+

∑
R �=0

1

R
erfc

(
R

σ

)
− 2σ

√
π

A
+

∑
k �=0

2π

k A
erfc

(
σk

2

)
. (A.19)

Appendix B. Expansion of the quasi-2D Ewald interaction

The function appearing in the exchange–correlation energy (U EW
XC in equation (6)) is vE(r)−ξ .

The exchange–correlation hole is normally short ranged; the extent to which vE(r)−ξ deviates
from 1/r at small r may be used to estimate the finite-size error associated with the Ewald
interaction. The expansion of this function for small r and large lattice parameter (L) follows.

Combining equations (A.19) and (A.18) gives
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vE(r) − ξ = 2

σ
√

π
−

∑
R �=0

erfc
(

R
σ

)
R

+
∑
R

erfc
( |r−R|

σ

)
|r − R|

− 2π

A

[
z erf

(
z

σ

)
+

σ√
π

(e−z2/σ 2 − 1)

]

+
∑
k �=0

π

k A

{[
e−kz erfc

(
σk

2
− z

σ

)
+ ekz erfc

(
σk

2
+

z

σ

)]
cos k · r‖

− 2 erfc

(
σk

2

)}
. (B.1)

The first line of this expression reduces quickly to

1

r
+

2r2

3σ 3
√

π
+ O[r4] + O[e−L2/σ 2

]. (B.2)

The second line is also simply expanded, giving

− 2
√

πz2

σ A
+ O[z4]. (B.3)

The sum in k-space is slightly more involved. To begin, we note that

erfc(x0 + x) = erfc(x0) +
2√
π

(x2x0 − x)e−x2
0 + O[x3]. (B.4)

Applying this result,

e−kz erfc

(
σk

2
− z

σ

)
+ ekz erfc

(
σk

2
+

z

σ

)
=(2 + k2z2) erfc

(
σk

2

)
− 2z2k

σ
√

π
e−(σ k/2)2

+ O[z4].

(B.5)

The error is of order z4 rather than z3 because any terms involving odd powers of z must cancel
out. The next step is to expand the cosine to O[r2]; the k-space sum of equation (B.1) then
becomes

∑
k �=0

[
πk

A

(
z2 − (k · r‖)2

k2

)
erfc

(
σk

2

)
− 2

√
πz2

σ A
e−(σ k/2)2

]
+ O[r4] (B.6)

which reduces to

∑
k �=0

[
πk

A

(
z2 − k2r2

‖
2k2

)
erfc

(
σk

2

)
− 2

√
πz2

σ A
e−(σ k/2)2

]
+ O[r4] (B.7)

from a comparison of the contributions to the sum of all the k-vectors of a given magnitude.
To proceed further, we use the following two-dimensional Fourier series:

∑
R

e−((r−R)/σ )2 =
∑

k

πσ 2

A
e−(σ k/2)2

eik·r (B.8)

with r = 0. This gives

∑
k �=0

e−(σ k/2)2 = A

πσ 2

∑
R

e−(R/σ )2 − 1

= A

πσ 2
− 1 + O[e−L2/σ 2

] (B.9)
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which, when substituted back into equation (B.1), leads to

vE(r) − ξ = 1

r
+

(
z2 − r2

‖
2

)(∑
k �=0

πk

A
erfc

(
σk

2

)
− 4

3σ 3
√

π

)
+ O[r4] + O[e−L2/σ 2

]. (B.10)

The remaining k-space sum may be written in terms of the new variable β = 1/σ 2:∑
k �=0

πk

A
erfc

(
σk

2

)
=

∑
k

πk

A
erfc

(
k

2
√

β

)

= S(β). (B.11)

Differentiating,

dS

dβ
=

∑
k

√
π

2Aβ
√

β
k2e−k2/4β

= 2
√

π
√

β

A

d

dβ

(∑
k

e−k2/4β

)

= 2
√

π
√

β

A

d

dβ

(
Aβ

π

∑
R

e−R2β

)

= 2
√

β√
π

∑
R

(1 − R2β)e−R2β. (B.12)

Here, equation (B.8) has again been used to convert the reciprocal space sum to one in real
space. To recover the original sum, we integrate from 0 to β:

S(β) − S(0) =
∫ β

0
dβ

2
√

β√
π

∑
R

(1 − R2β)e−R2β

= 2√
π

∑
R

∫ √
β

0
dt 2t2(1 − R2t2)e−R2t2

= 4√
π

∑
R �=0

(I2 − R2 I4) +
4√
π

∫ √
β

0
dt t2. (B.13)

The two remaining integrals are

I4 =
∫ √

β

0
dt t4e−R2 t2

= −β
√

β

2R2
e−R2β +

3

2R2
I2 (B.14)

and

I2 =
∫ √

β

0
dt t2e−R2t2

= −
√

β

2R2
e−R2β +

√
π

4R3
erf(R

√
β). (B.15)

Substituting these results into equation (B.13), and using the fact that S(0) = 0,

S(β) = 4√
π

∑
R �=0

[( √
β

4R2
+

β
√

β

2

)
e−R2β −

√
π

8R3
erf(R

√
β)

]
+

4β
√

β

3
√

π

= 4β
√

β

3
√

π
− 1

2

∑
R �=0

1

R3
erf(R

√
β) + O[e−L2β]. (B.16)
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Returning to the original summation,
∑
k �=0

πk

A
erfc

(
σk

2

)
= 4

3σ 3
√

π
− 1

2

∑
R �=0

1

R3
erf

(
R

σ

)
+ O[e−L2/σ 2

]

= 4

3σ 3
√

π
− C

L3
+ O[e−L2/σ 2

] (B.17)

where the constant C is given by

C = 1
2

∞∑′

m,n=−∞
(m2 + n2)−3/2 (B.18)

and the prime here indicates that the term with m = n = 0 should be excluded from the sum.
It may be shown [15] that this sum reduces to

4β(3/2)ζ(3/2) (B.19)

where β and ζ are the Dirichlet beta and Riemann zeta functions respectively, giving
C = 4.516 810 842.

Combining equations (B.17) and (B.10) gives the final result:

vE(r) − ξ = 1

r
− C

L3

(
z2 − r2

‖
2

)
+ O[r4] + O[e−L2/σ 2

]. (B.20)

References

[1] Williamson A J, Rajagopal G, Needs R J, Fraser L M, Foulkes W M C, Wang Y and Chou M-Y 1997 Phys. Rev.
B 55 R4851

[2] Tosi M P 1965 Solid State Physics: Advances in Research and Applications vol 16 (London: Academic)
[3] Fraser L M, Foulkes W M C, Rajagopal G, Needs R J, Kenny S D and Williamson A J 1996 Phys. Rev. B 53

1814
[4] Parry D E 1975 Surf. Sci. 49 433
[5] Parry D 1976 Surf. Sci. 54 195
[6] Yan Z, Perdew J P, Kurth S, Fiolhais C and Almeida L 2000 Phys. Rev. B 61 2595
[7] Acioli P H and Ceperley D M 1996 Phys. Rev. B 54 17199
[8] Li X-P, Needs R J, Martin R M and Ceperley D M 1992 Phys. Rev. B 45 6124
[9] Needs R J, Towler M D, Drummond N D and Kent P R C 2003 CASINO Version 1.6.2 User Manual (Cambridge:

University of Cambridge)
[10] Foulkes W M C, Mitas L, Needs R J and Rajagopal G 2001 Rev. Mod. Phys. 73 33
[11] Szabo A and Ostlund N 1989 Modern Quantum Chemistry (New York: McGraw-Hill)
[12] Fahy S, Wang X W and Louie S G 1990 Phys. Rev. B 42 3503
[13] Kato T 1957 Commun. Pure Appl. Math. 10 151
[14] Kent P R C, Hood R Q, Williamson A J, Needs R J, Foulkes W M C and Rajagopal G 1999 Phys. Rev. B 59

1917
[15] Borwein J M and Borwein P B 1987 Pi and the AGM: a Study in Analytic Number Theory and Computational

Complexity (New York: Wiley)


